

MAKE IT SO Interaction Design Lessons from Science Fiction by NATHAN SHEDROFF & CHRISTOPHER NOESSEL foreword by Bruce Sterling

FIII Rosenfeld

CONTENTS

How to Use This Book	iv
Frequently Asked Questions	vi
Foreword	xvii
CHAPTER 1	
Learning Lessons from Science Fiction	1
What Is an Interface?	3
Which Science Fiction?	3
What Counts?	5
Why Look to Fiction?	6
The Database	7
Finding Design Lessons	7
The Shape of a Lesson	10
Finding Inspiration in Science Fiction	11
Let's Begin	13

PART I: ELEMENTS OF SCI-FI USER INTERFACES

CHAPTER 2	
Mechanical Controls	15
At First, Mechanical Controls Were Nowhere	16
Then They Were Everywhere	17
For a While, Mechanical Controls Started	
Disappearing	21
Now They Coexist with Other Interfaces	24
Mechanical Controls Are Used to Evoke Moods	26
Mechanical Controls: Will We Come Full Circle?	27
CHAPTER 3	
Visual Interfaces	29
What Counts?	32
Text-Based Interfaces	32
Command-Line Interfaces	32

Graphical User Interfaces	36
Typography	36
Glow	40
Color	40 //1
Display Shape	50
Lavers and Transparency	51
$2^{1}/_{2}D$	54
Grouped Controls	54
File Management Systems	59
Motion Graphics	50
Viewal Style	64
Visual Style	64
Final Fantaau	65
Final Fantasy	66
The Unronicles of Riddick	66
The Incredibles	67
Case Study: Star Trek's LCARS	68
Visual Interfaces Paint Our Most Detailed	
Pictures of the Future	73
CHAPTER 4	
Volumetric Projection	75
What Counts?	76
What Do Volumetric Projections Look Like?	78
How Are Volumetric Projections Used?	81
Communications	81
Reinforcing Social Hierarchy	85
Navigation	86
Medical Imaging	87
Real-World Problems	87
Confusion	87
Eyestrain	88
Cropping	88

Occlusion	89	
Overuse	89	
Volumetric Projection Has Been Defined by Sci-Fi	90	
CHAPTER 5	•	
Gesture	91	
What Counts?	92	
The Canonical Gestural Interface: <i>Minority Report</i>	95	
Gesture Is a Concept That Is Still Maturing	97	
Hollywood's Pidgin	98	
1. Wave to Activate	98	
2. Push to Move	99	
3. Turn to Rotate	99	
4. Swipe to Dismiss	100	
5. Point or Touch to Select	100	
6. Extend the Hand to Shoot	101	
7. Pinch and Spread to Scale	101	
Direct Manipulation	102	
Gestural Interfaces Have a Narrative Point of View	104	
Gestural Interfaces: An Emerging Language	108	
CHAPTER 6		
Sonic Interfaces	109	
What Counts?	110	
Sound Effects	110	
Ambient Sound	112	
Directional Sound	112	
Music Interfaces	114	
Voice Interfaces	115	
Simple Voice Output	116	
Voice-Identification Interfaces	117	
Limited-Command Voice Interfaces	118	

Conversational Interfaces	121
Sonic Interfaces: Hearing Is Believing	124
CHAPTER 7	
Brain Interfaces	125
Physically Accessing the Brain	126
Invasive Brain Interfaces	126
Noninvasive Brain Interfaces	127
Disabling the Mind	131
Two Directions of Information	132
Writing to the Brain	132
Reading from the Brain	138
Telexperience	142
Active Subjects	144
Virtual Telepresence	144
Actual Telepresence	148
Manifesting Thought	149
Having Virtual Sex	149
Piloting a Spaceship	150
Playing a Game	151
Dismantling Two Sci-Fi Brain-Tech Myths	151
Myth: Brain-Affecting Interfaces Will	
Be Painful	151
Myth: Knowledge Can Be Installed and	
Uninstalled Like Software	153
Where Are the Thought Interfaces?	153
Brain Interfaces: A Minefield of Myths	155
CHAPTER 8	

Augmented Reality	157
What Counts?	158
Appearance	160
Sensor Display	160

Location Awareness	163	
Context Awareness	165	
Object Awareness	165	
Awareness of People	167	
Goal Awareness	171	
Goal: Flying Well	171	
Goal: Precise Targeting	172	
What's Missing?	176	
Augmented Reality Will Make Us Laser-Focused,		
Walking Encyclopedias	176	
CHAPTER 9		
Anthropomorphism	177	
Humanness Is Transferable to Nonhuman		
Systems	179	
Appearance	185	
Voice	186	
Audible Expressiveness	188	
Behavior	189	
Degrees of Agency: Autonomy and Assistance	190	
Anthropomorphism: A Powerful Effect That		
Should Be Invoked Carefully	195	

PART II: SCI-FI INTERFACES AND HUMAN ACTIVITIES

CHAPTER 10	
Communication	197
Asynchronous versus Synchronous Communication	199
Composing	199
Playback	201
Activating the System	202
Specifying a Recipient	203
Fixed Connection	203

Operator	204
A Unique Identifier	205
Stored Contacts	206
Receiving a Call	208
Notification	208
What We Don't See	211
Accepting	211
Monitoring the Connection	212
Ending a Call	213
Audio	214
Audiovisualization	216
What We Don't See	217
Video	217
What We Don't See	218
Two More Functions	218
Language Translation	218
Disguise	220
Communication: How We'll Be Talking Next	221
CHAPTER 11	
Learning	223
Direct Download	225
Psychomotor Practice	227
Presentation Tools	232
Reference Tools	236
Machines to Think With	241
Testing Interfaces	244
Case Study: The Holodeck	247

248

250

250

251

Psychomotor Training

Machines to Think With

Presentation

Reference

Lessons Unique to the Holodeck	253	
What We Don't See	254	
Learning: Aiming for the Holodeck	255	
CHAPTER 12		
Medicine	257	
Assistive Medical Interfaces	259	
An Ounce of Prevention	259	
Evaluation	260	
Diagnosis	272	
Treatment	275	
Autonomous Medical Interfaces	280	
Case Study: The Doctor	282	
Life and Death	283	
Assisting Birth	283	
Revival	284	
Signaling Death	286	
Sci-Fi Medical Interfaces Are Focused Mainly		
on the Critical Situation	290	
CHAPTER 13		
Sex	291	
Matchmaking	292	
Sex with Technology	295	
Devices	295	
Sexbots	297	
Virtual Partners	299	
Coupling	300	
Augmented Coupling	300	
Cyborgs	301	
Mediated Coupling	302	
The Interface Is Not the Sex	307	

CHAPTER 14	
What's Next?	309
Using Sci-Fi	310
More Than Sci-Fi	311
And Sci-Fi to Come	313
Appendix: Collected Lessons	
and Opportunities	315
Credits	323
Index	327
Acknowledgments	346
About the Authors	347

Why Look to Fiction?

With a working category of sci-fi and having decided what to focus on, we next ask the question: Why look to fiction for design lessons at all? How can it inform our non-fictional, real-world design efforts?

One answer is that, whether we like it or not, the fictional technology seen in sci-fi sets audience expectations for what exciting things are coming next. A primary example is the *Star Trek* communicator, which set expectations about mobile telephony in the late 1960s, when the audience's paradigm was still a combination of walkie-talkie and the Princess phone tethered to a wall by its cord. Though its use is a little more walkie-talkie than telephone, it set the tone for futuristic mobile communications for viewers of primetime television. Exactly 30 years later, Motorola released the first phone that consumers could flip open in the same way the *Enterprise*'s officers did (Figure 1.1). The connection was made even more apparent by the product's name: the StarTAC. The phone was a commercial success, arguably aided by the fact that audiences had been seeing it promoted in the form of *Star Trek* episodes and had been pretrained in its use for three decades. In effect, the market had been presold by sci-fi.

Another answer is that with media channels proliferating and specializing, common cultural references are becoming harder and harder to come by. Having common touchstones helps us remember design lessons and discuss ideas with each other. Sci-fi is a very popular genre, and the one in which speculative technology is seen most often. If you want to discuss an existing technology, you can reference a real-world interface. But to discuss future technologies, it's easier to reference a movie than to try to define it a priori: "Kinect is, you know, kind of like that interface from *Minority Report*, but for gaming."

FIGURE 1.1a,b Star Trek: The Original Series (1966); the Motorola StarTAC (1996).

A last answer is that interface makers in the real world and in sci-fi are, essentially, doing the same thing—creating new interfaces. In this sense, all design is fiction—at least until it gets built or is made available to users and customers. When designers create anything that isn't the real, final product that ships, they're creating speculative interfaces—fictions. Each wireframe, scenario, pencil sketch, and screen mockup says, "Here's how it might be," or even "Here's how it ought to be." Designers for each domain ask similar questions: Is this understandable? What's the right control for this action? What would be awesome? Although they ultimately work with different audiences, budgets, media options, goals, and constraints, the work is fundamentally similar. Each can learn something from the other.

The Database

Once we had a set of movies and TV properties to review (see the complete list online at www.scifiinterfaces.com), we watched and evaluated everything we could get our hands on. We entered screenshots and descriptions into a custom database, which formed the basis for our investigation. This database is also available on the website, where you can make your own contributions and see much of the content that could not fit into this book.

Finding Design Lessons

Armed with this tool, we then identified what we could learn from the interfaces. There are four ways we go about this.

Bottom Up

To learn lessons from the bottom up, we investigated an individual interface in detail. To do this, we need an interface whose use we understand and that has sufficient screen time to allow us to analyze its inputs, compare these with its outputs, and evaluate what works for the user in accomplishing his or her goal. If it doesn't work, we may still be able to learn a lesson from a negative example. If it does work, we can compare it to any similar interfaces we find in the real world to see what might translate. The things that can translate are captured as lessons, and we can later look for other examples in the survey that support or refute it.

Top Down

To examine the survey from the top down, we tagged each description in the database with meaningful attributes. The example in Figure 1.2 shows a set of tags for the write-up on the wall-mounted videophone seen in *Metropolis*.

7

Description: Joh verifies that he's seeing the correct channel visually when he sees Grot's nervous pacing in camera view. Confident that he's calling the right place, Joh picks up a telephone handset from the device and reaches across to press a control on the right. In response, the lightbulbs on Grot's videophone begin to blink and, presumably (it's a silent film), make a sound.

Tags: analog, calling, communication, dial, dials, filmmetaphor, hangingup, hangup, messages, printedoutput, telephone, telephony, tickertape, tuning, turningoff, videophone, wallmounted, wristroll, wristtwist

FIGURE 1.2a-c Metropolis (1927).

With the interfaces in the database tagged, we looked at the aggregated tag cloud to see what stood out. We then drilled down into the tags that appeared most often: *glow, screen, red, blue, video*, and *holography* (Figure 1.3). We then tried to explain why the tag appears so frequently, compared the interfaces similarly tagged, considered their commonalities and differences, and compared them with interfaces in the real world.

FIGURE 1.3 This tag cloud, created using tools at Wordle.net, illustrates the major top-down themes.

Chasing Similarities

Another way to glean design lessons from the survey is to notice and pursue personally observed similarities between properties. For example, fans of gestural interfaces may have noticed similarities between the controlling gestures appearing in completely different movies and TV shows, from different writers and even different studios. What's going on here? Since there's not a gesture czar calling the shots, what's underneath these similarities? Are they coming from existing interfaces, common sense, or somewhere else? Investigating questions like these is something of a top-down approach, but it comes from pursuing particular questions rather than letting the questions emerge from the tags. (See Chapter 5 for some of our answers to these questions about gestural interfaces.)

Apologetics

One of the most rewarding techniques is *apologetics* (we're borrowing the term from theology). When we found an interface that couldn't work the way it was shown, we looked for ways to "apologize" for it; that is, we thought of ways that the interface *could* work the way it was depicted. In a few cases, this led to some interesting insights about the way technology *should* work.

One example of this comes from 2001: A Space Odyssey. From an Earthorbiting space station, Dr. Floyd has a videophone conversation with his daughter back on Earth. During the scene, we see the young girl's hands mash on the keypad of the phone, but the call isn't interrupted (Figure 1.4). Although this may have been an oversight on the director's part, it is nonetheless the way the system *should* work. If the system knows that a child is using it and the button mashing is likely unintentional, it should disregard these inputs and not interrupt the call. Although this presumes sophisticated technology and an interface idea even the film's producers probably didn't think about, we can still use this principle even as we work with our real-world technology today.

FIGURE 1.4 2001: A Space Odyssey (1968).

This technique, more than any of the others, may have pragmatic readers scratching their head, and asking if sci-fi interface designers really put as much thought into their creations as we have in examining them.

It's entirely possible that they don't, that sci-fi interfaces are a product of pure inspiration, produced under tight deadlines with little time for research or careful reflection. But to be of use to us who *are* able to reflect on the interfaces we create, we have to examine them as if they were produced exactly as the designers intended them to be. It's a choice you have to make when writing critique, an issue referred to in literary circles as *authorial intent*. We chose to look at the interfaces without trying to reverse-engineer intent. If we didn't, we might get spun out on vicious cycles of second-guessing.

We used all of these techniques in the development of this material. The bottom-up approach provided many individual lessons. The top-down approach provided a reliable path through the vast amount of material we had to work with, and provided much of the structure of the book. Chasing similarities resulted in a few particular chapters, like Volumetric Projection (Chapter 4) and Gesture (Chapter 5). Apologetics resulted in the most satisfying results from the material, though, because we had to use what worked right from a narrative stance—a human stance—to arrive at new interaction design ideas. We couldn't count on finding these opportunities in sci-fi, since we had to wait to find "mistakes," but we could take advantage of them when we did.

The Shape of a Lesson

When capturing lessons, our goal was to provide them in a useful format. We want them to be easily spotted as you read or skim through the material, so they are set off in green type. The titles of the lessons are written as unambiguous imperatives, so their intended lesson is clear. We've included a description in accessible language that calls out nuances, extends the examples, and describes when the lesson is applicable.

Sometimes, the analysis points to something that wasn't seen in the survey. These particular lessons are called out as Opportunities, but are otherwise similar in appearance.

Finally, we gathered together all of the lessons in an appendix at the back of the book so you can find a particular one more easily and consider them as a set.

Finding Inspiration in Science Fiction

In the year 2000, Douglas Caldwell was successfully petitioned by his teenage son to see the film *X-Men*. Douglas wasn't really a fan of sci-fi, but wanted to spend time with his son, so he agreed to go. Watching the film, he was amazed to see a solution to a 2,000-year-old problem that he dealt with every day.

In a scene near the climax, the X-Men are gathered around a large display surface, which looks something like a circular, metallic tabletop. As Cyclops describes the mission they are about to undertake, the map changes shape, as if it was made of hundreds of tiny pins, each rising and falling to form the topography needed (Figure 1.5).

The reason this speculative technology was so important to Douglas was that he worked for the US Army Topographic Engineering Center. Part of his job was to create 3D maps and ship them to generals in the field, so they could study the theater of battle and consider tactics. These maps are called "sand tables" because they were originally created by generals thousands of years ago using actual trays of sand. Military leaders still do the same thing when they don't have a better map on hand (Figure 1.6).

FIGURE 1.5 *X-Men* (2000).

FIGURE 1.6 President Lyndon Johnson consulting a sand table of Khe Sanh during the Vietnam War.

The main problems with modern 3D sand tables, while very accurate, are that they're expensive, static, somewhat delicate to transport, and useless if you guessed the wrong terrain.

The animated pin board Douglas saw in *X-Men* solved a number of these problems all at once. Such a table could depict the topography of any location in the world, at any scale, at any time, and a general would ideally only ever need one.

When he went back into work, he immediately wrote a request for proposal that referenced the scene in the film, so that military contractors would be inspired in the same way. One of the companies responding to the proposal, Xenovision, was awarded the development contract and, four years later, developed a working model: the Xenotran Mark II Dynamic Sand Table (Figure 1.7).

FIGURE 1.7 The Xenotran Mark II Dynamic Sand Table, with its top raised.

FIGURE 1.8 A still from a video showing the Xenotran Mark II Dynamic Sand Table with active topography and projected satellite imagery.

The Mark II independently moves small metal rods that, together, create a new surface, much like what is implied in *X-Men*. Alone, this solution closely matches the technology implied in the film. While in development, though, the team took the concept even further. They covered the pins with a thin, white rubber sheet and vacuum-sealed it to create a smooth surface across the pins. Then, they projected imagery onto the surface from above, creating topography in full relief, with up-to-date satellite imagery and overlays of data (Figure 1.8). All of it can change over time, to create realistic, animated surfaces, depict tsunamis traveling across the sea, or even show landscapes shifting over geologic time.

The main lesson from this story is that the technology might never have been developed if Douglas hadn't seen the film.

LESSON USE SCIENCE FICTION

Sci-fi, with its ability to present design fictions of speculative technologies with only narrative constraints, can do more than entertain us. It can inspire us with what's possible, what's ideal, and what would just be plain awesome. This book is meant to encourage you to look at sci-fi in the same way and come away inspired and ready to change the world.

Let's Begin

Now that we have outlined our constraints, explained our intentions, and gotten the coordinates from the navicomputer, let's make the jump to light speed.